

Holobiont-based plant breeding

Pierre Hohmann, Lukas Wille, Monika Messmer pierre.hohmann@fibl.org

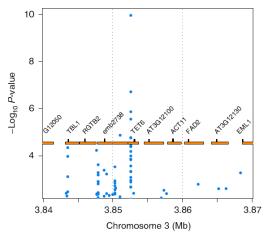
Microorganisms – a solution to maintain yields with reduced inputs

Plant genetics of plant-microbe interactions

Is genotypic variation exploitable for breeding?

2019 keynote discussions:

- Jos Raaijmakers: Beneficial plant-associated microbiomes were indirectly coselected throughout the history of breeding
- Richard Jefferson: Plant genome-focussed breeding has neglected agile trait contributions from the microbiome
- > 5-10% of variation of microbiome composition explained by plant genotype


Plant genetics of plant-microbe interactions

Genotypic variation of plant responsiveness to micro(biome)es

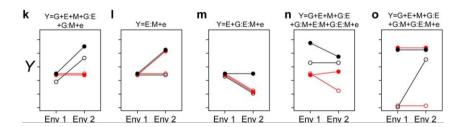
- Colonisation success of symbionts
- Recruitment of microbes under stress situations
- Microbe-mediated disease resistance
- Priming effects (readiness of plant to respond to (a)biotic stresses)

Genetic marker (QTL)

- Plant microbiome composition
- Recruitment of specific microbial taxa
- Microbe-induced leaf rust resistance

Horton et al. 2014

Breeding for plant-microbe interactions


Disentangling the environmental effect:

From $G \times E$ to $G \times E' \times MB$

G: Host genotype

E': climate and physicochemical soil environment

MB: Soil and/or plant microbiome

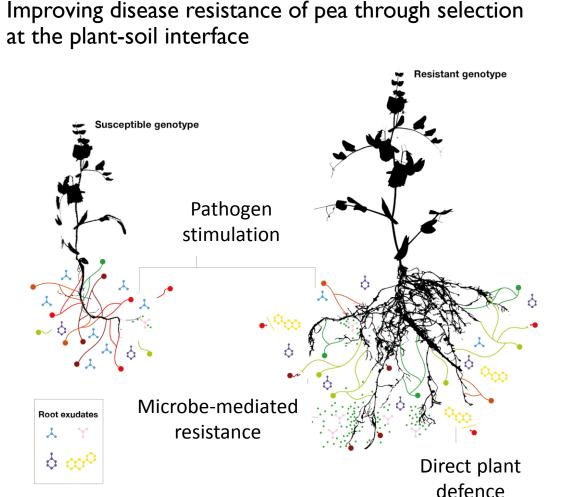
Oyserman et al. 2020

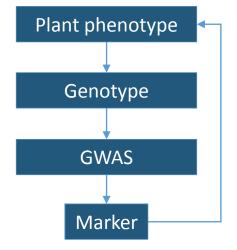
- Disentangling MB from E due to its dynamic and evolving nature
- Useful framework to capture ecological interactions
- Enhancing the predictability of microbe-assisted plant breeding

EUCARPIA workshop on Breeding for Plant x Microbe

Opportunities for breeding

- Yield stability and productivity (reduced inputs)
- Tools: High-throughput phenotyping, machine learning and modelling, seed treatments, genetic markers, gene editing
- Monitoring and decision tools for genotype selection, but also for crop selection and agricultural practices
- From controlled conditions to field>> farmer participation



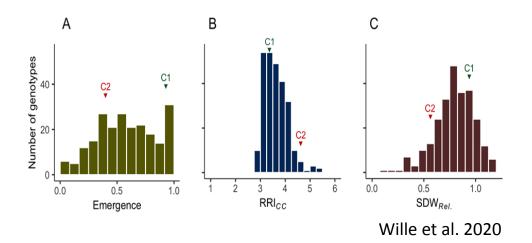


Lukas Wille

Pea is affected by a complex of fungal and oomycete pathogens, e.g.:

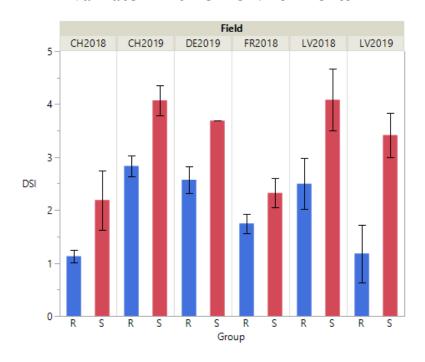
Aphanomyces euteiches

Pythium ultimum


Fusarium solani

Rhizoctonia solani

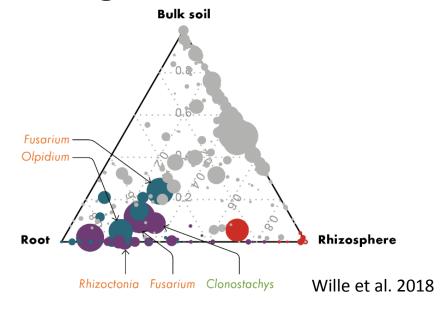
Heritable variation for resistance against a root rot complex

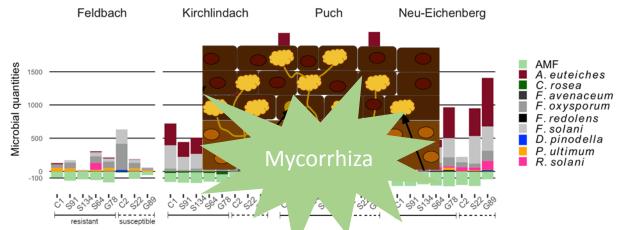


Heritable Variation in Pea for Resistance Against a Root Rot Complex

Validated in 6 field environments

Heritable Variation in Pea for Resistance Against a Root Rot Complex





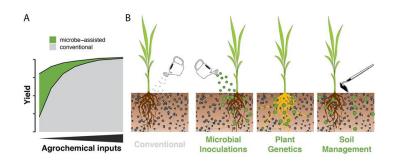
© Christine Schreiner

Verification of the complexity of pearoot rot

Microbial markers for resistance breeding

AGRIBIOME – Plant microbiome recruitment for superior agricultural systems

Three genome-wide association studies related to disease resistance:


- 1. Standard plant genetic markers based on disease phenotype
- 2. Advanced plant genetic markers for functional microbiome diversity and the recruitment of microbial key taxa
- 3. Holobiont genetic markers: combined action of plant+microbiome markers

Outlook

perspective article

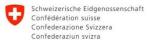
Main Research priority:

Identify genetic determinants that steer beneficial plant-microbiome interactions

Key targets:

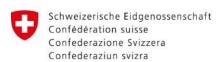
- Bridge fundamental knowledge and application
- Understand functioning within complex microbial communities and holobiont interactions
- Improve efficacy predictions
- Link beneficial functions of indiv. microbes or entire microbiomes with plant traits

Thank you for your attention!



Main partner:

AGROSCOPE



Main Funding:

